SAS Global Forum 2010 Applications Development

Paper 015-2010

Flex Your SAS® Muscle
Joe Flynn, SAS Institute Inc., Cary, NC

ABSTRACT

This paper explains how to integrate the power of SAS® software with the rich and interactive environment provided
by Adobe Flex. SAS 9.2 enables you to easily deploy SAS® Stored Processes as open-standard Web services,
which can then be called by Adobe Flex applications. This integration enables you to use the proven analytics and
power provided by SAS as a viable back-end data source for your Adobe Flex applications.

This discussion, intended for applications developers and SAS programmers, first guides you through the much-
improved process of deploying a SAS stored process as a Web service in SAS 9.2. The paper then explains how to
call this Web service from Flex, how to interpret the results returned by SAS in Flex, and the different methods in
which you can display those results.

The paper also includes an example that shows the code that you need in order to use SAS as a back-end data
source to your Flex applications.

INTRODUCTION

Rich Internet Applications (RIA) are Web applications that have the usability of desktop software and give users a
more interactive and enriching experience. They are deployable on all major browsers and operating systems, which
removes the hassle of performing a client installation. Most systems that run an RIA have Adobe Flash Player
installed, which is a prerequisite to running a Flex application. This paper focuses on using Adobe Flex and
integrating your SAS data to feed the Flex application. With the enhancements to the SAS 9.2 Intelligence Platform,
you can now generate stored processes into Web services easily. After the Web service is generated, Adobe Flex
can then call Web services to retrieve your SAS data.

The first section of this paper shows you how to create the stored process using SAS® Enterprise Guide®. Following
that section, the discussion focuses on the improved process of deploying your SAS stored process as a Web
service. You will learn how to call this Web service from Flex and interpret the results that are returned by SAS in
Flex. In addition, you will learn about the different methods that you can use to display those results. The objective is
to create an interactive Web application in Flex, which enables you to drill into data. For this discussion, the sample
data set is SASHELP.ORSALES, Red Hat JBoss 1.4.2 is the middle tier, and all Flex programming is done with
Adobe Flex Builder 3 Professional.

CREATING THE STORED PROCESS

Before you can use a Web service to call SAS code, first you must create the stored process. The easiest way to
create and manage the stored process is within SAS Enterprise Guide 4.2. To do this:

1. Invoke SAS Enterprise Guide.
2. Select File » New P Stored Process to open the Create New SAS Stored Process Wizard.
3. Onthe Name and Description page of the wizard, fill out the following essential fields (Display 1):

a. Inthe Nane field, enter the name of the stored process. For this example, the stored process is
called or Sal es.

b. Inthe Locat i on field, choose a location for the SAS folders that will store the metadata object for
this stored process. In this example, the location is / G obal For um

c. Inthe Keywor ds (conma separ at ed) field, type the keywords XMLA Web Ser vi ce, which
ensures that this stored process is treated as an XMLA Web service and is not a generated Web
service when it is deployed.

SAS Global Forum 2010 Applications Developme

@ Create

MNew SAS Stored Process Wizard

1 of6

MName and Description

gsas

Save stored process as:

Name:

orales

Location:

/Global Forum Browse...

(Example: /BIP Tree/My Folder Name)

Description:

Keywords {comma separated).

More (F1)...
|_ <Back |'_|I MNext> II_ Finish | Cancel
._::::iiiﬂ
Display 1. Entering the Narre, Locat i on, and Keywor ds Information

4. Click Next to go to the SAS Code page.

5. Enter your SAS code in the text box as shown in Display 2.

@ Create New SAS Stored Process Wizard

2 of5

A1 ibname WEBOUT xml;
2= #macro sData:
3

SAS Code

proc sgl;

f* If initial execution, create overview
of =sales based on Product Categoryv */

m

oM o=l

%if "gcategory" = "initial™ %then 3%do;
create table WEBOUT.orsales as

select Product Category as Product Category, sum(profit) as Profit | |
sashelp.orsales group by Product Category:
%end:

/* If not initial exeuction, subset data
based on Selected Product Category,
grouping now by Product Group *f

1]

Include code for

'] [_[jeafcode]

v | Stored process macros I
7 5
1] Global macro variables More (F1)..
LIBMAME references
<Back v Next> || Finish || Cancel

Display2. Entering SAS Code

SAS Global Forum 2010 Applications Development

This step requires some planning, because you need to decide what data is streamed back to your Flex
application. The data that is returned by this stored process must be in XML, which means that you must
stream back your output to the _WEBOUT fileref. This example uses the following code:

I'i bname _webout xn ;
%racro sDat a;

proc sql;

/* If this is the initial execution, create an overvi ew
of sal es based on the product category. */

%f "&category" = "initial" % hen %o;
create tabl e _webout.orsales as
sel ect Product _Category as Product_Category, sum(profit) as Profit
from sashel p. orsal es group by Product _Category;
%end;

/* If this is not the initial execution, subset the data based on
the sel ected Product _Category, now groupi ng by Product_G oup. */

%l se %do;
create tabl e _webout.orsales as
sel ect product _group as Product_Group, sun(profit) as Profit
from sashel p. orsal es where Product _Category = "&category"
group by product _group;
%end
quit;
%rend;

YsDat a;

This code uses macro logic to determine whether the Flex application is requesting the high-level overview
of the data (grouped by Pr oduct _Cat egor y), or a lower-level view of the data, subset by

Pr oduct _Cat egory and grouped by Pr oduct _Gr oup. This is determined by the cat egory
parameter, which will be set up later.

6. Clickthe I ncl ude Code f or button and deselect St or ed process macr 0os (Display 2) to disable
the stored process macros %STPBEGIN and %STPEND.

The macros set up ODS statements for the stored process, which are not required when streaming back
XML.

7. Click Next to go to the Execution Options page.

In this step, you must ensure that the logical stored-process server is set as the execution server. This is
required because the XMLA Web service must produce streaming output.

8. Inthe Qut put Opti ons box, select St r eam ng (Display 3).

SAS Global Forum 2010 Applications Development

@ Create New SAS Stored Process Wizard ﬁ
3 of5 Execution Options Ssas_
Save SAS Code As:

Execution server: SASApp - Logical Stored Process Server 7

Name for SAS code: orSales sas

Path on execution server: C:\Program Files\SAS S ASFoundation®3. 2inttechsample

Output Options:
Streaming
[Package
Data Sources

Mare {F1)...
<Bock |v|[MNext> | [Finish | [Cancel |

Display 3. Selecting St r eani ng inthe Qut put Opti ons Box

For this example, there are no data sources to define.
9. Click Next to go to the Prompts page.
On this page, you define the cat egor y parameter that is already referenced in your SAS code.

10. Click Add »Prompt from SAS Code for P category (Display 4).

11.

Display 4. Defining the Cat egor y Parameter

On the Edit Prompt page, click OK to accept all of the default values and return to Page 4 of the wizard

(Display 5).

Ig Create New SAS Stored Process Wizard u
4 of5 Prompts (Ssas
Displayed Text Name: Type Add -
= @Ganela\ Standard group @ New Prompt...
Multiple... 2} Prompt from SAS Codefor »
7
category 4 Project prompt copy
@* New Group...
Adds & new prompt or group.
More (F1)...
k) (s (] [

SAS Global Forum 2010 Applications Development

[5] Edit Prompt ﬂ

| Frompt Type and Values | Depmdenctesl

category
Displayed text
category

Description

Eareni group:
P \General
Options
I [Hide from user [Requires a non-blank value
[] Read-only values

[ok J[cocd |[Heo |

Display 5. Accepting the Defaults on the Edit Prompt Page

12. Click Next to go to the Summary page.

13. De-select Run st or ed process when fi ni shed and click Fi ni sh (Display 6).

@ Create New SAS Stored Process Wizard g

5 of5 Summary Ssas

Summsry Generated by Enterprise Guide Stozed Brocess Managez

Stored Process
Hames: sadfsadfa
Stored process execution servez:

Name: SASApp - Logical Stored Process Sexver
Version:

m

SAS source code storage:
Location: 5P Source Directory
Location description:

SAS code filename: sadfsadfz . sas

Output package:

Groups and Prompts:

4

II [Bun stored process when finished Copy to clipboard] I

More {F1)...

Display 6. De-selecting Run st ored process when fini shed

Your stored process is now created and ready to be deployed as a Web service.

5

SAS Global Forum 2010 Applications Development

DEPLOYING THE WEB SERVICE

Deploying the stored process as a Web service enables you to call the stored process directly from Adobe Flex. To
deploy your stored process as a Web service:

1. Open SAS® Management Console and navigate to the stored process, or Sal es, that you created in the
previous section.

For this example, the stored process is located in / G obal Forum

2. Right-click the stored process and click Depl oy as Wb Ser vi ce (Display 7).

l Mame Descripkion

@ orSales

Copy
75 Delete

Rename

[Export 585 Package...

IE;]? Deploy As Wieh Serdice..,

Rioperties |Dep|nys a collection of stored processes as a Web service,

Display 7. Selecting Depl oy As Wb Ser vi ce in the Submenu

When you deploy a Web service in this manner, you can select more than one stored process. Each stored
process that you select corresponds to an operation in the Web service. There can be multiple operations
inside the Web service. However, each name must be unique.

3. Inthe Wb Ser vi ce Maker URL field on the Web Service Information page, type the URL that will be the
endpoint to the Web Service Maker if it differs from the default endpoint that is shown in Display 8.

Deploy As Web Service @
web Service Information
Specify the URL for the SAS BI Web Services WebServiceMaker and a name for the new Web service to be
deployed,
Weh Service Maker LIRL: http: fvaurserver com:B080/ SASEIWS services/WebServicetMaker -
Mew Web Service Mame: arws

(@ Use my current credentials bo deploy

() Use these credentials to deploy:
User IC:

Password:

Display 8. Typing the URL for the Endpoint to Web Service M aker

The Web Service Maker is a Web service that is created during the initial installation of the SAS Intelligence
Platform. Its purpose is to make Web services.

SAS Global Forum 2010 Applications Development

4. Inthe NewWeb Ser vi ce Nane field, type the name of your Web service, which is or W5 in this example
(Display 8).

On this page you can also specify credentials under which to deploy this Web service. Ensure that the user
is part of the SAS Bl Web Services Users metadata group.

5. Click Next to go to the next page.

6. Inthe Namespace field on the Web Services Keywords and Namespace page (Display 9), type the
namespace if it differs from the default namespace ht t p: // t enpuri . org.

YWeb Service Keywords and Namespace
Enter the namespace and keywards associated with this web service,

Mamespace: :' Httpi-,l;,l;liempuri.u:uruj',liu:urWS

Keywords: Add keyword. ..

Delets ké.\,-'u::ord

Display 9. Typing the Namespace in the Nanmespace Field

The default namespace is acceptable for Web services that are under development. If you have a
published service, then enter a unique and permanent namespace. This unigue hamespace is required so
that client applications can distinguish it from other Web services. Although namespaces might be in the
form of a URL, they do not need to be addresses for actual resources on the Web.

7. Inthe Keywor ds field, you can enter keywords, which can be used to locate this Web service later. (This
example does not use keywords.)

8. Click Next to go to the last page, which provides an overview of all of the details that you entered
(Display 10).

(3] Deploy As Web Service

- Confirm Web Service Deployment I

| Confirm the Following parameters which il be passed to the 'WebServiceMaker bo deploy & news Web service,
This operation may bake several minubes and cannot be cancelled once started.

Web Service Maker URL: | hitp:fyourserver com BOBNSASEIWS servicesiNebServiceldaker
Meve Web Service Name: | or'ws

Namespace: hittp:f ftempar orglordts

Stored Frocesses:

;:a'.'war&:

[stesk | o> | [onh] [Lcomesl] []

Display 10. Overview of the Web Service Details

7

SAS Global Forum 2010 Applications Development

The details include the Web Service Maker URL, the Web service name, the namespace, a list of the
stored processes that are being deployed in this Web service, and any keywords that you entered.

9. Click Fi ni sh.

If everything works properly, the Web Service Successfully Deployed dialog box displays, which contains
the endpoint for your deployed Web service (Display 11).

Web Service Successfully Deployed ﬁ

® Web service successfully deployed to the following
location:

http:/{yourserver.com:8080/SASBIWS/services/or'WS

(Lo]

Display 11. Dialog Box Indicating That the Web Service Successfully Deployed

CALLING AND USING THE WEB SERVICE

Figure 12 shows a simple, high-level overview of the Web service process.

Client & Web SAS Application
Application Service Server

(Middle-tier (Execute Stored
Java Code) Process)

(SoapUl or
Adobe Flex)

Figure 12. Overview of the Web Service Process

The client application communicates directly with the middle-tier Java code (JBoss, in this case), making a
standardized call to the Web service. The middle tier then makes an Integrated Object Model (IOM) call to the SAS
Application Server and executes the stored process. The results are streamed back to the middle tier and are finally
returned to the client application.

Eviware SoapUl is a free and open-source Web service testing tool that enables you to test that the Web service is
functioning properly. This tool also enables you to examine the output of your Web service. The client application,
which for the purposes of this paper is either SoapUI or Adobe Flex, initially obtains the Web Service Description
Language (WSDL) from the Web service. The WSDL is an XML document, which provides all of the information that
is necessary to call the Web service. This includes everything that a client application needs to know about this Web
service, such as the operations that are available in the Web service, the endpoint, and the format of the XML
document that the Web service is expecting. The XML document that is passed into a Web service is transported by
a data envelope called a SOAP envelope, which is discussed later.

SAS Global Forum 2010 Applications Development

First, examine the WSDL, as follows:

1. Gotohttp://yourserver.com 8080/ SASBI W5/ to find the list of Web services that are
available.

2. Click the link for the Web service that you created previously (or WS for this example) to display the WSDL
for this Web service.

The WSDL contains the name of the Web service (or W5) and the stored process that you deployed

(or Sal es), which is now considered an operation. It also contains or Sal esPar anet er s and

or Sal esResul t, which define the parameters for this operation and the format of the results. The most
important information for this example is the URL that is the address for the WSDL.

3. Copy the URL that is displayed in the browser to the clipboard, as shown in Display 13.

<. http:/fyourserver,com:B080/SASBIWS/services/orWs wsd|

Display 13. The Web Browser Showing the URL for the WSDL

Now you can call this Web service from SoapUl.
1. Open SoapUl and select File » New SoapUIl Project.

2. Onthe New soapUl Project page, in the Pr 0] ect Narme text box, type a name for the project (or Test
for this example) (Display 14).

N New_soap[‘.lltl?i.rojec_t- _..’.".j
Mew soapUIProject _@
Creates a new soapll Project in this workspace :

Project Mame: |l:|rTest |

Initial WEDLAWADL: |http:f}r‘oursewer.cDm:8EISUIS&SBI‘JVstewices;’DrWS?WsdI | | Browse...‘

Create Requests: [#] Create sample requests for all operations?

Create TestSuite: [] Creates a TestSuite for the imported WSDL or WADL
Create MockService: [| Creates a Web Service Simulation of the imported WSOL
Add REST Service:

Relative Paths: [] Stares all file paths in project relatively to project file (requires save)

Display 14. Typing a Project Name

3. Inthelnitial WSDL/WADL text box, add the WSDL location that you previously copied from the
browser (Display 14).

4. Click OK.

In the soapUl window, the or Sal es operation is in the left-hand navigation (Display 15).

SAS Global Forum 2010 Applications Development

i]
‘Eile Tools Desktop Help

! soapUI Starter Page
2 & =
E}@ orTest
| =X orSSoapBinding
& orSales .
Lo 2R Request1 eviwAare sc

lequest Editor Enter

[Shows the Request Editor for this Request)
26 Add to MockService i
Add as MockResponse Step

Clone Request F2 i
Rename Fz
Delete Delete :
Online Help F1 =

Display 15. The soapUI 3.0.1 Window Showing the or Sal es Operation

5. Expand or Sal es to see the Request 1 node. Right-click the Request 1 node.

6. In the submenu, select ShowRequest Edi t or.

The new Request 1 page appears with a sample SOAP envelope. This was derived from the or W6 WSDL.
In the XML, notice that there is a placeholder for your cat egor y parameter. This stored process contains
the following %IF statement:

%f "&category" = "initial" % hen %lo;

7. For testing purposes, pass in the value i ni t i al for the cat egory parameter by changing the XML to
the following:

<orws: category>initial </ orws: category>

8. Click the green arrow button E] to call your or W5 Web service for the first time (Display 16).

Me=sE0ao [ittp://10.11.12.108:8080/SASBIWS/services/orWs = T +
islubm'rt request to specified endpoint URLi:"hnnp:f/scr:_f o |ssoapeny: Enwvelope xmlns:soapenv="http://schenas rmlsoap. org/fsoap
Tap et HEade T = “zoapenv:Bodys
= <soapenv:Bodys = “m:orSalesBesponse xmlns:m="http:/ tempuri.org/orWs">
= <orws:orSaless = <m:orSalesResults
“O0rWSIparameterss <axisfnsl337:8treans xmlns:axisins1337="http: //tenpu
<! --0Optiomal:--» “axisinsl338: WEBOUT contentType="text/xml;charse
<Drws:cat,egory>init,ial|<,-’orws:cs “<axisfnsl339:Value xmlns:axisfnsl3zs="http://t
=/ /0rwsIparamneterss <TABLE>
“forws:orSaless <0RSALES=
“fsoapenv:Body= “Product_Category=Assorted Sports Art
</soapenv: Enveloper <Profit>9994898_ 76</Profit>
</0RSALES>
<0ORSALES>
“Product_Category=Children Sports</Pr
= <Profit»2417119.78</Profit>
DENENG— 7 | D

Aut Headers (0) Attachments (0) WS-A WS-REM Headers (6) Attachments (0}
response time: 386ms (2034 bytes) | 11:1

Display16. Calling the or W5 Web Service

10

SAS Global Forum 2010 Applications Development

If everything completes successfully, the XML is returned in the pane to the right. The desired result is
shown in Display 16.

To test your drill-down capability, you can pass in a product category to ensure that you get back a subset
of the products in that category.

9. For this example, change the cat egor y parameter in your SOAP envelope as follows:

<orws: cat egory>Chi | dren Sports</orws: cat egory>

In reviewing each response XML, notice that there are the same six lines in both requests. Also notice the bold
names below. You need to use these values in Flex to insert your results into an ArrayCollection.

<m or Sal esResul t >
<axi s2ns1379: Streans xml ns: axi s2ns1379="http://tenpuri.org/ or Ws">
<axi s2ns1380: _WEBQUT cont ent Type="t ext/ xml ; char set =wi ndows- 1252"
xm ns: axi s2ns1380="http://tenpuri. org/ or W5" >
<axi s2ns1381: Val ue xm ns: axi s2ns1381="http://tenpuri.org/ or Ws" >
<TABLE>
<ORSALES>

After successfully testing the Web services, you are now ready to integrate your SAS data into a Flex application.

INTEGRATING SAS DATA INTO A FLEX APPLICATION

Flex consists of two languages: MXML and ActionScript. MXML is an XML-based language, which incorporates
many built-in functions and is generally used to lay out the user interface. When compiled, each MXML tag is
generated into ActionScript. ActionScript is a powerful object-oriented programming language. This section of the
paper provides a brief overview of the important parts of the code that call the previously created Web service. The
complete Flex code is included in the Appendix, which provides additional comments about the process. A basic
knowledge of Flex programming is required for understanding the content of this section.

To call your Web service, use the <nmx: \WebSer vi ce> tag. This tag requires the WSDL address
(http://yourserver.com 8080/ SASBI W5/ ser vi ces/ or W5?wsdl), the operation name (or Sal es),
and any parameters (cat egor y) that you want to pass into the Web service. Here is an example of how your Web
service call should be set up in Flex:

<nmx: WebServi ce i d="webServi ce"
wsdl ="http://yourserver.com 8080/ SASBI W5/ ser vi ces/ or Ws?wsdl "
showBusyCur sor ="t rue" >
<nx: oper ati on nane="or Sal es"
resul t For mat =" obj ect "
resul t="get Resul t (event) ;"
faul t="get Faul t (event) ;">
<nx: request >
<par anet er s>
<category> {parmtoString()}</category>
</ par anet er s>
</ nx: request >
</ nx: oper ati on>
</ mx: WebSer vi ce>

The only fields that are unfamiliar at this point should be in the <x: oper ati on nanme=> tag, specifically
resul t Format,result,andfaul t.Theresul t For mat function lets the compiler know that the return type
of the Web service will be an object. The r esul t function executes when the operation is completed, and the

f aul t function executes if any problems are encountered. Also, you are using ActionScript to pass the value of
your cat egor y parameter, which enables you to set this dynamically based on user input.

Here is the XML response from your Web service. As you recall, this was detailed in the previous section using
SoapUlI (the structure of the XML is particularly important, because you only want the or Sal es data in your array).

11

SAS Global Forum 2010 Applications Development

=soapenv: Enwvelope xmlns: soapenv="http: f/=chem:
=soapenw:Body>
=m:orSalesBesponse xmlns:wm="http: / tenp
“m:orSalesPesult>
“axisinslef:Streams xmlns:axisins,
<axisZnsled: WEEOUT content Ty
ZaxisZnslT0:Value xmlns:axi:
=TABLE:=>

“0REALES=
“Product Category=.
“Profit=9994233 76

= O0RSALES>

<0RSALES=
“Product Category=l
“Profit=z417119.73-

= O0RSALES>

The GetResult function retrieves the results that are generated by the Web service and places them into an
ArrayCollection:

private function getResult(evt:ResultEvent):void {
orArray = new ArrayCol l ection(ArrayUtil.toArray
(evt.result. Streans. _WEBOUT. Val ue. TABLE. ORSALES. source));
if (orArray.length == 0)
orArray = new ArrayCol l ection(ArrayUtil.toArray
(evt.result. Streans. WEBQOUT. Val ue. TABLE. ORSALES)) ;
if (flag == 1)
sc("Product _Category");
el se
sc("Product _Goup");

}

Notice that the object evt.result.Streams._ WEBOUT.Value. TABLE.ORSALES.source corresponds to the XML that
you viewed from SoapUl. You are using an ArrayCollection instead of a plain array in this case. Because you will
eventually use this data to populate a data grid, using an ArrayCollection enables you to easily sort the data. Also
notice that a %IF statement evaluates a flag variable. This is used to determine whether the Web service is returning
the Pr oduct _Gr oup or Product _Cat egor y level of data and is discussed in more detail in the full code in the
Appendix. This is set in alternating executions. Depending on which results are being returned, you need to reset the

X axis and the data-grid fields. This is the purpose of the sc function.

To call the Web service as the application loads, use i ni tial i ze="firstLoad()" inthe
<nx: Appl i cat i on> tag. Then create a FirstLoad function as shown below which calls your Web service:

private function firstLoad():void {
/1 Set paraneter to initial value

parm= "initial";
/1Set flag to 1
flag = 1

/] Execute Wb service.
webSer vi ce. or Sal es. send();

}

Notice that the call is in the format of webSer vi cei d. oper ati on. send() . Upon execution of this application,
you should have data returned by your Web service in your ArrayCollection. The data is now ready and can be
easily displayed in many different ways.

The following code creates a data grid. You can use the ArrayCollection called or Ar r ay, which contains the results
of your Web service, as the data provider. Because you are initially passing in the cat egor y parameter with the
value of i ni ti al , the default columns to display are Product_Category and Profit.

12

SAS Global Forum 2010 Applications Development

<nx: DataGid id="nyGid" w dth="426" hei ght="338"
dat aProvi der="{orArray}" x="591" y="196">
<nx: col ums>
<nx: Dat aGi dCol umrm i d="pr odDF" dat aFi el d="Product _Cat egory" />
<nx: Dat aGi dCol uim dat aFi el d="Profit" />
</ nx: col ums>
</ nx: DataGi d>

When you run the project in Flex, the call is made to the Web service and the response is displayed in a data grid
much like the one that is shown in Display17.

st

. Product_Category Profit
Assorted Sports Articles . 9994898.76
Children Sports 2417119.78
Clothes 9208275.41
Golf 3711822.11
Indoor Sports: 1481330.76
Outdoors 13400513.2
Racket Sports 2016834.77
Running - Jogging 2300666.19
Shoes 8889545.98
Swim Sports 72T7868.6
Team Sports 1007238.97
Winter Sports 3928833.99

Display 17. The DataGrid Display Showing Data for Product_Category and Pr ofit

The complete Flex code is included in the Appendix. This code also produces an interactive a bar chart, line plot,
and pie chart of this data in which you can click either a column of the bar chart or a slice of the pie chart to drill
down into your data. Display 18 shows the final report.

13

SAS Global Forum 2010

14000000

Product_Category Profit

Assorted Sporks Articles 9994898.76

1z000000

Childran Sports 2417119.78

Clothes QZO0B375.41

inoooooo -

Galf a711822.11

Indoor Sports 1421330,7¢6 il
s0oo0o0o00 -

Cutdoars 13400513.2

Racket Sports 2016834, 77

s0o00000 -

Funning - Jogging 2E00666,19

Shoes 2889545,92

4000000

Swim Sports T27oeR.6

Tearmn Sports 1007238.97 z000o00

Winter Sports 3928833.99

9208375.41 id4000000

2417119.78
12000000

371182211
9994298, TE

i00aoooo
1451330.76

2000000

s000000 —
39EEE33.99

4000000
13400513.2 1007238.97

F2FRER.E

2000000

201622477 8859545,98

I=0oo: Seoa SWEhTL SO Shasa Foum Samaa
zak

2300666.19

Oudoosa Tarsieg- lnggeg Bwie

Display18. The Final Report with a Data Grid, Bar Chart, Pie Chart, and Line Plot

DEPLOYING TO JBOSS

Once the Flex application is working as expected, you can then deploy the report for use on your JBoss application
server.

1. Inyour Flex application, select File » Export » Release Build.

Make a note of the folder name to which your export displays in the Export t o f ol der text box, as
shown in Display 19.

14

Applications Development

SAS Global Forum 2010 Applications Development

x =11
Export Release Build
Build and export an optimized release-quality SWF or Adobe IR application installer,

Project: IOriUnGUId

Ll L

Application: IDashboard.mme

Wiew source

™ Enable view source

Choose Source Files.., |

Export to folder: Ibin-release
(in fQrionGold)

@ < Back | Mext = | Einish | Cancel |

Display 19. The Export Release Build Window Showing the Folder Name of the Export

2. Click Fi ni sh.
Use the operating system to browse to the export folder.

4. Copy the files that are in export folder to the j boss- 4. 2. 0. GA\ ser ver\ SASSer ver 1\ depl oy
\j boss-web. depl oyer\ ROOT. war \ or i on folder of your JBoss installation. (Note that you need to
create the Or i on folder.)

The Flex application should now be available from the URL
http://yourserver.com 8080/ ori on/ Dashboard. ht m .

You might encounter the following exception (Display 20):

Error:

[FaultEvent fault=[RPC Fault
faultString="Security error accessing url"
fautCode="Channel.Security.Error"

faultDetail="Destination: DefaultHTTR"]
messageld="3FFaF7 C5-FEF3-23EB-D273-
FCI2EC218282" type="fault" bubbles=false
cancelable=true eventPhase=2]

Display 20. Error M essage

This error is due to the security sandbox restrictions of Flash Player. By default, Flash applications can load data
only from the same domain. To automatically give an application access to data on another domain you must use a
cross-domain policy file. This file is named crossdomain.xml and must be deployed on the root of the Web server

15

SAS Global Forum 2010 Applications Development

that the SWF file is calling. This error might occur if the Web service is being called using the IP address, rather than
the host name. Below is an example of a cross-domain policy file, which would allow an SWF to access the available
resources on the Web server where this is located:

<?xm version="1.0"7?>

<! DOCTYPE cr oss-domai n- pol i cy SYSTEM

“http://ww. macr onedi a. conf xml / dt ds/ cr oss- domai n- pol i cy. dtd">

<cr oss-domai n- pol i cy>
<site-control pernitted-cross-domain-policies="all"/>
<al | ow htt p-request - header s-from domai n="*" headers="*" secure="fal se" />
<al | ow access-from domai n="*" secure="fal se" />

</ cross- domai n- pol i cy>

Note that before you deploy any cross-domain policy file like this, is it very important to understand all implications of
its presence. Refer to the Adobe resource "Cross-domain policy file specification”

(www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html) for more information about cross-domain policy
files.

CONCLUSION

Using SAS BI Web Service is an easy and convenient way to stream your SAS data into Flex applications. This

enables you to easily mix the power and analytics of SAS software with the rich and visually stimulating environment
that is provided by Flex.

APPENDIX
The Flex Code

<?xm version="1.0" encodi ng="utf-8"?>
<nx: Appl i cation xm ns: nx="htt p://ww. adobe. com 2006/ rknl " | ayout =" absol ut e"
initialize="firstLoad()" w dth="1098" hei ght="1027">

<nx: Scri pt >

<! [CDATA[

i mport nx.collections. ArrayCol | ecti on;
i mport nx.charts. Hi tDat a;

i mport nx.charts.events. ChartltenEvent;
i mport nx.controls.Alert;

i mport nx.rpc.events. Resul t Event;

i mport nx.rpc.events. Faul t Event;

import nx.utils.ArrayUtil;

[Bi ndabl e] private var orArray: ArrayCol | ecti on;
[Bindabl e] private var parmString = "first";
private var flag:int = 0;

private function getResult(evt: ResultEvent):void {
orArray = new ArrayCol | ecti on(ArrayUtil.toArray
(evt.result. Streans. WEBQOUT. Val ue. TABLE. ORSALES. source));
if (orArray.length == 0)
orArray = new ArrayCol | ection(ArrayUtil.toArray
(evt.result. Streanms. WEBQOUT. Val ue. TABLE. ORSALES)) ;
/1 Set the X-Axis and datafield properly.
if (flag == 1)
sc("Product _Category");
el se
sc("Product _G oup");

private function getFault(evt: FaultEvent):void {
Alert.show"Error:\n" + evt.toString());
}

16

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html

SAS Global Forum 2010 Applications Development

private function firstLoad():void {
/1 Set the paranmeter to initial value.

parm= "initial";
//Set the flag to 1.
flag = 1;

/1 Execute the Wb service.
webSer vi ce. or Sal es. send() ;

}

private function sc(xF:String):void{
/1 Change the X axis for the bar chart.
cSeriesl.xField = xF;
cAxi sl.categoryField = xF

/1 Change the colum for the datafield.
pr odDF. dat aFi el d = xF;

/1 Change the pie nanme for the pie chart.
psl. nanmeFi el d= xF

/1 Change the X axis for the line plot.
| Seriesl. xField = xF;
| AXi s1. categoryField = xF

private function drillData(e: ChartltenEvent):void {
/1 1f the flag is 1, you are drilling into the data.
if (flag == 1)
//Set the flag to O.
flag = 0;
/1 Set the parameter to the value of the itemthat
is clicked.
parm = e. hitData.item Product _Category.toString();
/1 Execute the Wb service.
webServi ce. or Sal es. send() ;

} else {

}

firstLoad();

11>

</ nx: Scri pt>
<l---Control the aninmations for the charts.-->

<nx: SeriesSlide id="slideln" duration="1000" direction="up"/>
<nx: SeriesSlide id="slideCQut" duration="1000" direction="down"/>
<nx: Seri eslnterpol ate id="pieln" duration="1000" />

<l---Set up the Wb service.-->

<nx: WebServi ce id="webService"
wsdl ="http://vista64-
15938. na. sas. com 8080/ SASBI W5/ ser vi ces/ or Ws?wsdl " showBusyCur sor ="t rue" >
<nx: oper ati on name="or Sal es"

resul t For mat =" obj ect "

resul t ="get Resul t (event);"

fault="get Fault (event);">

<nx: request >
<par anet er s>
<category>{parmtoString()}</category>

17

SAS Global Forum 2010 Applications Development

</ par anet er s>
</ nx: request >
</ nx: oper ati on>
</ mx: WebSer vi ce>

<l---Set up the data grid, using orArray as the data provider.
Col ums are dynamically set using the sc function in ActionScript.-->

<nx: Panel title="DataGid" |ayout="horizontal" y="79"
hori zont al Cent er="-291" w dt h="448" hei ght ="378">
<nx:DataGid id="nyGid" w dth="426" hei ght="338"
dat aProvi der="{or Array}" x="591" y="196">
<nx: col utms>
<nx: Dat aGri dCol utm i d="pr odDF" dat aFi el d="Pr oduct _Cat egory" />
<nx: Dat aGri dCol unm dat aFi el d="Profit" />
</ nx: col ums>
</ nx: Dat aGi d>
</ nx: Panel >

<l---Set up the bar chart, using orArray as the data provider.
The X axis is dynam cally set using the sc function in ActionScript.-->

<nx: Panel title="Bar Chart" |ayout="horizontal" y="79"
hori zont al Cent er =" 175" >
<nx: Col utmChart id="col um" hei ght="338" wi dt h="432"
itemClick="drill Data(event)" paddi ngLeft="5" paddi ngR ght="5"
showDat aTi ps="true" dataProvi der="{orArray}" x="67" y="196">
<nx: series>
<nx: Col utmsSeri es id="cSeriesl"
xFi el d="Product _Category" yField="Profit" hideDataEffect="slideCut"
showDat aEf f ect ="sl i del n"/>

</ nx:series>
<nx: hori zont al Axi s>
<nx: Cat egor yAxi s id="cAxisl"
cat egor yFi el d="Pr oduct _Cat egory"/ >
</ mx: hori zont al Axi s>
</ nx: Col umcChart >
</ nx: Panel >

<l---Set up the pie chart, using orArray as the data provider.
The X axis is dynamically set using the sc function in ActionScript.-->

<nx: Panel title="Pie Chart" |ayout="horizontal" y="465"
hori zont al Cent er ="-294" wi dt h="454" hei ght =" 328" >
<nx: PieChart id="pie" itenClick="drillData(event)"
paddi ngLeft ="5" paddi ngRi ght ="5" showDat aTi ps="true" dataProvi der="{orArray}"
X="67" y="196" w dt h="430" hei ght="276">
<nx: seri es>
<nx: Pi eSeries id="psl"
field="Profit"
nanmeFi el d="Pr oduct _Cat egory"
| abel Position="cal |l out" hideEffect="pieln"
showDat aEf f ect =" pi el n"
/>
</ nx:series>
</ nx: Pi eChart >
</ nx: Panel >

<l---Set up the Line Plot, using orArray as the dataprovider.
The X axis is dynamically set using the sc function in ActionScript.-->

<nx: Panel title=Line Plot" |ayout="horizontal" y="465"
hori zont al Cent er =" 174" wi dt h="454" hei ght ="328">

18

SAS Global Forum 2010 Applications Development

<nx: Li neChart x="792" y="586" id="linechartl" w dth="422"
hei ght =" 286" dat aProvi der="{orArray}">
<nx: seri es>
<nx: LineSeries id="ISeriesl" displayNane="Profit"
xFi el d="Prouct _Group"” yField="Profit" hideEffect="pieln"
showDat aEf f ect =" pi el n"/ >
</ nx:series>
<nx: hori zont al Axi s>
<nx: Cat egor yAxi s id="1 Axi s1"
cat egor yFi el d="Product _Cat egory"/>
</ nmx: hori zont al Axi s>
</ nx: Li neChart >
</ nx: Panel >

</ nx: Appl i cati on>

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Joe Flynn

SAS Institute Inc.

Cary, NC 27513

Work Phone:

E-mail: support@sas.com
Web: support.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

19

http://support.sas.com
mailto:support@sas.com

	2010 Table of Contents

